Ion Energy Stirrer ( Pengaduk Ion ) ( 8 pcs / box )

Rp 875.000,00

 

iON Stirrer akan Memecah klaster molekul Air dan Oksigen menjadi lebih KECIL dan PADAT, sehingga LEBIH mudah di serap tubuh & Far InfraRednya menyebabkan getaran dengan molekul air, mengionisasi dan MENGAKTIFKAN molekul air, sehingga membuat AIR BERENERGI.

 

iON Stirrer Bermanfaat untuk :

1.Membantu detoksifikasi dan keseimbangan tingkat pH tubuh

2.Meningkatkan oksigen dalam darah dan menghindari dehidrasi

3.Meningkatkan sirkulasi darah dan tingkat metabolisme tubuh

4.Membantu melancarkan BAB dan masalah pencernaan

5.Membuat tubuh tidak mudah lelah, meningkatkan konsentrasi

6.Membantu melarutkan gula dalam tubuh bagi penderita diabetes

7.Membantu menurunkan tingkat kolesterol / asam urat setelah sekitar 2-4 bulan

8.Mencuci wajah setiap hari dengan iON Stirrer akan membuat kulit wajah menjadi lebih halus dan lembut

 

Cara pakai iON Stirrer : 
• Rendam terus menerus 4 - 8 pcs ION Stirrer ke dalam botol air (500 - 1000 ml) dengan air mineral biasa, dingin atau hangat, dalam 5 menit air iON siap di minum.

* Untuk Hasil Maksimal Minum air iON Stirrer 2,5 liter setiap hari

* Satu minggu sekali iON Stirrer dan botol boleh di cuci.

* Jika air iON Stirrer di tuang / di pindah ke gelas, maka maksimal dalam 15 menit air sudah harus di minum habis, jika lewat maka air akan kembali menjadi molekul standard, kecuali 1 pc iON Stirrer di celupkan ke dalam gelas maka air bebas di minum kapan saja..

 

 

 

 

 

 

 

 

FDA Test Report for Stirrer
Water Molecule and Science
Absorption spectra of gaseous, liquid and solid water
The water absorption spectrum is very complex. Water's vapor spectroscopy has been recently reviewed [348]. The water molecule may vibrate in a number of ways. In the gas state, the vibrations [607] involve combinations of symmetric stretch (v1), asymmetric stretch (v3) and bending (v2) of the covalent bonds with absorption intensity (H216O) v1;v2;v3 = 0.07;1.47;1.00 [8]. The stretch vibrations of HD16O refer to the single bond vibrations, not the combined movements of both bonds.
 

Blood condition has been improved after 15 minutes
drinking Airboom Energy Water

Before Drinking Airboom Energy Water

 

After Drinking Airboom Energy Water
 

Main vibrations of water isotopologues

Gas

v1, cm-1

v2, cm-1

v3, cm-1

H216O

3657.05

1594.75

3755.93

H217O

3653.15

1591.32

3748.32

H218O

3649.69

1588.26

3741.57

HD16O

2723.68

1403.48

3707.47

D216O

2669.40

1178.38

2787.92

T216O

2233.9

995.37

2366.61

 
 


Shown opposite are the main vibrations occurring in water. The movements are animated using the cursor. The dipole moments change in the direction of the movement of the oxygen atoms as shown by the arrows. As the H-atoms are light, the vibrations have large amplitudes.
The water molecule has a very small moment of inertia on rotation which gives rise to rich combined vibrational-rotational spectra in the vapor containing tens of thousands to millions of absorption lines. In the liquid, rotations tend to be restricted by hydrogen bonds, giving the librations. Also, spectral lines are broader causing overlap of many of the absorption peaks.

Water's ion pairs?
The water molecule is often described in school and undergraduate textbooks of as having four, approximately tetrahedrally arranged, sp3-hybridized electron pairs, two of which are associated with hydrogen atoms leaving the two remaining lone pairs. In a perfect tetrahedral arrangement the bond-bond, bond-lone pair and lone pair-lone pair angles would all be 109.47° and such tetrahedral bonding patterns are found in condensed phases such as hexagonal ice.

Ab initio calculations on isolated molecules, however, do not confirm the presence of significant directed electron density where lone pairs are expected. The negative charge is more evenly concentrated along the line between where these lone pairs would have been expected, and lies closer to the center of the O-atom than the centers of positive charge on the hydrogen atoms.
 

Early 5-point molecular models, with explicit negative charge where the lone pairs are purported to be, fared poorly in describing hydrogen bonding, but a recent TIP5P model shows some promise. Although there is no apparent consensus of opinion [116], such descriptions of substantial sp3-hybridized lone pairs in the isolated water molecule should perhaps be avoided, as an sp2-hybridized structure (plus a pz orbital) is indicated. This rationalizes the formation of (almost planar) trigonal hydrogen bonding that can be found around some restricted sites in the hydration of proteins and where the numbers of hydrogen bond donors and acceptors are unequal.



Note. This cartoon of water does not represent its actual outline, which is more rotund.